MANUFACTURING PROCESS OF CARBON FIBRE

MANUFACTURING PROCESS:

In the manufacturing process, the raw materials, which are called precursors, are drawn into long strands or fibers. The fibers are woven into fabric or combined with other materials that are filament wound or molded into desired shapes and sizes.

There are typically five segments in the manufacturing of carbon fibers from the PAN process. These are: 

a) Spinning: PAN mixed with other ingredients and spun into fibers, which are washed and stretched

b) Stabilizing: Chemical alteration to stabilize bonding.

c) Carbonizing: Stabilized fibers heated to very high temperature forming tightly bonded carbon crystals.

d) Treating the Surface: The surface of fibers oxidized to improve bonding properties.

e) Sizing: Fibers are coated and wound onto bobbins, which are loaded onto spinning machines that twist the fibers into different size yarns. Instead of being woven into fabrics, fibers may be formed into composites. To form composite materials, heat, pressure, or a vacuum binds fibers together with a plastic polymer


a) Spinning: 
                           Acrylonitrile plastic powder is mixed with another plastic, like methyl acrylate or methyl methacrylate, and is reacted with a catalyst in a conventional suspension or solution polymerization process to form a polyacrylonitrile plastic.
 The plastic is then spun into fibers using one of several different methods. In some methods, the plastic is mixed with certain chemicals and pumped through tiny jets into a chemical bath or quench chamber where the plastic coagulates and solidifies into fibers. This is similar to the process used to form polyacrylic textile fibers. In other methods, the plastic mixture is heated and pumped through tiny jets into a chamber where the solvents evaporate, leaving a solid fiber. The spinning step is important because the internal atomic structure of the fiber is formed during this process.
The fibers are then washed and stretched to the desired fiber diameter. The stretching helps align the molecules within the fiber and provide the basis for the formation of the tightly bonded carbon crystals after carbonization.

b) Stabilizing:
                              Before the fibers are carbonized, they need to be chemically altered to convert their linear atomic bonding to a more thermally stable ladder bonding. This is accomplished by heating the fibers in air to about 390-590° F (200-300° C) for 30-120 minutes. This causes the fibers to pick up oxygen molecules from the air and rearrange their atomic bonding pattern. The stabilizing chemical reactions are complex and involve several steps, some of which occur simultaneously. They also generate their own heat, which must be controlled to avoid overheating the fibers. Commercially, the stabilization process uses a variety of equipment and techniques. In some processes, the fibers are drawn through a series of heated chambers. In others, the fibers pass over hot rollers and through beds of loose materials held in suspension by a flow of hot air. Some processes use heated air mixed with certain gases that chemically accelerate the stabilization.

c) Carbonizing:  
                                     Once the fibers are stabilized, they are heated to a temperature of about 1,830-5,500° F (1,000-3,000° C) for several minutes in a furnace filled with a gas mixture that does not contain oxygen. The lack of oxygen prevents the fibers from burning in the very high temperatures. The gas pressure inside the furnace is kept higher than the outside air pressure and the points where the fibers enter and exit the furnace are sealed to keep oxygen from entering. As the fibers are heated, they begin to lose their non-carbon atoms, plus a few carbon atoms, in the form of various gases including water vapor, ammonia, carbon monoxide, carbon dioxide, hydrogen, nitrogen, and others. As the non-carbon atoms are expelled, the remaining carbon atoms form tightly bonded carbon crystals that are aligned more or less parallel to the long axis of the fiber. In some processes, two furnaces operating at two different temperatures are used to better control the rate de heating during carbonization.


d) Treating the Surface: 
                                                 After carbonizing, the fibers have a surface that does not bond well with the epoxies and other materials used in composite materials. To give the fibers better bonding properties, their surface is slightly oxidized. The addition of oxygen atoms to the surface provides better chemical bonding properties and also etches and roughens the surface for better mechanical bonding properties. Oxidation can be achieved by immersing the fibers in various gases such as air, carbon dioxide, or ozone; or in various liquids such as sodium hypochlorite or nitric acid. The fibers can also be coated electrolytically by making the fibers the positive terminal in a bath filled with various electrically conductive materials. The surface treatment process must be carefully controlled to avoid forming tiny surface defects, such as pits, which could cause fiber failure.

e) Sizing:  
                      After the surface treatment, the fibers are coated to protect them from damage during winding or weaving. This process is called sizing. Coating materials are chosen to be compatible with the adhesive used to form composite materials. Typical coating materials include epoxy, polyester, nylon, urethane, and others.
8 The coated fibers are wound onto cylinders called bobbins. The bobbins are loaded into a spinning machine and the fibers are twisted into yarns of various sizes


Comments

Post a Comment

Popular posts from this blog

ORIENTATION OF CARBON FIBER